Quiz 1 Solution

October 12, 2018

Problem. Let V_i for i = 1, 2, 3, and 4 denote the vertices of a unit regular tetrahedron. Compute the number of walks along four edges of the tetrahedron of length 4 that begin at V_i and end at V_j .

Solution. As each vertex of a tetrahedron T is connected to any other vertex by an edge of T, the adjacency matrix A of the graph formed from the edges of T is given by

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$

By Proposition 1.2.23 it follows that the number of walks along four edges of the tetrahedron of length 4 that begin at V_i and end at V_j is given by the ij^{th} entry of A^4 . But

$$A^{2} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3 \end{bmatrix},$$

and, as $A^4 = (A^2)^2$,

$A^4 =$	$\begin{bmatrix} 3 \\ 2 \\ 2 \\ 2 \end{bmatrix}$	$2 \\ 3 \\ 2 \\ 2$	$2 \\ 2 \\ 3 \\ 2$	$\begin{bmatrix} 2\\2\\2\\3\end{bmatrix}$	$\begin{bmatrix} 3\\2\\2\\2 \end{bmatrix}$	$2 \\ 3 \\ 2 \\ 2$	$2 \\ 2 \\ 3 \\ 2$	2 2 2 3	=	$\begin{bmatrix} 21 \\ 20 \\ 20 \\ 20 \end{bmatrix}$	20 21 20 20	20 20 21 20	20 20 20 21	
	$\lfloor 2 \rfloor$	2	2	3	$\lfloor 2$	2	2	3		$\lfloor 20 \rfloor$	20	20	21	

Therefore, if i = j there are 21 walks along four edges of the tetrahedron of length 4 that begin at V_i and end at V_j , and if $i \neq j$, there are 20 such walks.