## Quiz 1 Solution

October 12, 2018

Problem. Let $V_{i}$ for $i=1,2,3$, and 4 denote the vertices of a unit regular tetrahedron. Compute the number of walks along four edges of the tetrahedron of length 4 that begin at $V_{i}$ and end at $V_{j}$.

Solution. As each vertex of a tetrahedron $T$ is connected to any other vertex by an edge of $T$, the adjacency matrix $A$ of the graph formed from the edges of $T$ is given by

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

By Proposition 1.2.23 it follows that the number of walks along four edges of the tetrahedron of length 4 that begin at $V_{i}$ and end at $V_{j}$ is given by the $i j^{\text {th }}$ entry of $A^{4}$. But

$$
A^{2}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
3 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 2 \\
2 & 2 & 2 & 3
\end{array}\right],
$$

and, as $A^{4}=\left(A^{2}\right)^{2}$,

$$
A^{4}=\left[\begin{array}{llll}
3 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 2 \\
2 & 2 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
3 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 2 \\
2 & 2 & 2 & 3
\end{array}\right]=\left[\begin{array}{llll}
21 & 20 & 20 & 20 \\
20 & 21 & 20 & 20 \\
20 & 20 & 21 & 20 \\
20 & 20 & 20 & 21
\end{array}\right]
$$

Therefore, if $i=j$ there are 21 walks along four edges of the tetrahedron of length 4 that begin at $V_{i}$ and end at $V_{j}$, and if $i \neq j$, there are 20 such walks.

